然而,對于原始生產(chǎn)者來說,要實現(xiàn)碳減排的氣候目標(biāo)還遠遠不夠。根據(jù)國際能源機構(gòu)的報告,為了實現(xiàn)可持續(xù)發(fā)展目標(biāo),到2030年,運輸生物燃料的生產(chǎn)需要確保每年增長10%。2019年的增長率僅為6%,國際能源署預(yù)測,未來五年的平均產(chǎn)出增長率僅為3%。
進口原材料受天氣、國際市場變化等因素影響。今年以來日益的全球糧食危機對國際生物燃料產(chǎn)生了直接影響。生產(chǎn)工藝不成熟?,F(xiàn)有成熟工藝存在著燃料穩(wěn)定性不夠或潤滑性差等缺點。
目前,生物燃料用于世界各地的航空試飛。大多數(shù)生物燃料是按一定比例添加到傳統(tǒng)航空燃料中的。雖然世界上大多數(shù)航空公司進行的飛行試驗結(jié)果表明,生物燃料和傳統(tǒng)燃料的混合可以在不改變飛機發(fā)動機結(jié)構(gòu)的情況下提高飛行效率,生物燃料是否足夠安全,以及它們是否會腐蝕或侵入發(fā)動機材料,但還需要進一步的討論和驗證。
即所有轉(zhuǎn)化過程將不可避免地導(dǎo)致新的污染源,包括二氧化碳和其他污染物的排放;如果煉油后的廢渣,特別是煉油廢油的廢渣處理不當(dāng),也會造成污染,治理污染的成本終會增加到成品油的價格中。
例如,為了監(jiān)督廢油的去向,促進廢油的回收和利用,英國已迫使餐館安裝烹飪廢油回收系統(tǒng);荷蘭廢油回收由資助,降低了生物航空燃料精煉企業(yè)的高回收成本;在日本,廢油由回收公司回收,并由購買。如果生物燃料要完全取代石油產(chǎn)品,不僅需要解決成本問題,還需要建立一個完整的生物燃料供應(yīng)鏈。
此外,可以制定政策,引導(dǎo)消費者積極參與生物燃料的使用。歐盟航空公司開發(fā)了碳排放交易系統(tǒng),并為航空公司規(guī)定了碳排放配額。在該系統(tǒng)中,以2004年至2006年往返歐盟的航空公司的年平均碳排放量作為該航空公司的排放基線。
2012年航空公司的累計碳排放量不得超過基線的97%,2013年不得超過基線的95%。在排放制度實施初期,航空公司可以免費獲得一定比例的免費排放配額,但免費配額逐年減少,非免費配額需要通過有償拍賣獲得。
微藻作為光合的光合生物之一,能提供大量非食物可再生生物質(zhì)能,積累大量脂類,并能生產(chǎn)生物燃料。某些產(chǎn)油微藻的脂肪酸總量可達干重的50%~90%。更重要的是,微藻含有豐富的生物活性物質(zhì),可在制備生物燃料的同時進行值的綜合利用,相對降低微藻采油成本。
為什么微囊藻有如此高的脂比?答案在于其特的碳封存能力。光合作用是自然界生物固碳的基礎(chǔ)。地球上每分鐘大約有300萬噸二氧化碳和110萬噸水可以通過光合作用轉(zhuǎn)化為200萬噸有機物,同時可以釋放210萬噸氧氣。