碘化銠回收,溶劑萃取法的分離
溶劑萃取在碘化銠回收中用于高純度銠的提純,常用萃取劑包括:
磷酸三丁酯(TBP):在6 M HCl體系中,Rh3?的分配比可達(dá)50以上。
胺類(lèi)萃取劑(如Alamine 336):對(duì)[RhCl?]3?有高選擇性,需添加改性劑(如異戊醇)抑制乳化。
典型流程為:料液(pH 0.5~1.0)與有機(jī)相(30% TBP/煤油)以O(shè)/A=1:3逆流萃取,銠負(fù)載率>95%。反萃采用稀氨水(1 M NH?OH),得到純化后的銠溶液。某南非精煉廠采用三級(jí)萃取,使銠純度從90%提升至99.99%,直收率92%。
碘化銠回收,熔鹽電解精煉高純銠
對(duì)純度要求≥99.999%的領(lǐng)域(半導(dǎo)體靶材),采用:
電解體系:RhCl?-LiCl-KCl熔鹽(450℃)
陰極電流密度:50-100 A/m2
陽(yáng)極雜質(zhì)控制:銀網(wǎng)隔膜阻擋Pd/Pt遷移
日本田中貴金屬的熔鹽電解車(chē)間,年產(chǎn)3噸5N高純銠,雜質(zhì)總量<1ppm
碘化銠回收,電子廢料中碘化銠的回收技術(shù)
電子行業(yè)產(chǎn)生的廢料(如印刷電路板鍍層、半導(dǎo)體電極)通常含有微量碘化銠(10–500 ppm)。回收需行物理分選(如渦流分選、靜電分離)富集貴金屬,再采用濕法處理:
硝酸浸出:在60℃下溶解基底金屬(Cu、Ni),銠留在殘?jiān)小?br />
王水精煉:溶解銠后通過(guò)氯化銨沉淀((NH?)?[RhCl?])純化。
日本DOWA集團(tuán)開(kāi)發(fā)的連續(xù)離心萃取系統(tǒng),可處理含Rh 50 ppm的電子廢液,回收率>97%,純度達(dá)99.9%。
碘化銠回收,電解回收碘化銠的優(yōu)化工藝
電解法可直接從含銠廢液中沉積金屬銠,關(guān)鍵參數(shù)包括:
陰極材料:鈦網(wǎng)或鉑電極(氫過(guò)電位高)。
電解液組成:Rh3?濃度>5 g/L,pH 1.5–2.5。
電流密度:100–200 A/m2(過(guò)高會(huì)導(dǎo)致粉末狀沉積)。
德國(guó)Heraeus的脈沖電解技術(shù)使銠鍍層致密度提高30%,電流效率達(dá)90%,能耗降至8 kWh/g Rh。
碘化銠回收,高溫氯化法回收碘化銠
高溫氯化法適用于處理難溶銠廢料(如陶瓷載體催化劑)。將物料與氯化鈉混合,在500–800℃通入氯氣,生成可溶性RhCl?:
2 RhI? + 3 Cl? → 2 RhCl? + 3 I?
碘蒸氣通過(guò)冷凝回收,而RhCl?溶液經(jīng)鋅粉還原得到銠黑。該法在俄羅斯Norilsk鎳廠應(yīng)用,單次處理量5噸,銠回收率91%,但需嚴(yán)格控制氯氣泄漏風(fēng)險(xiǎn)。
航天材料中碘化銠中銠回收的再生利用
火箭發(fā)動(dòng)機(jī)涂層(Rh/Ta合金)的特殊回收工藝:
酸混溶解:HF-HNO?(1:3)在-10℃低溫溶解避免Ta鈍化
梯度萃?。合扔肕IBK萃Ta,再用Aliquat 336萃Rh
等離子噴涂:再生Rh粉直接用于新涂層制備
NASA的閉環(huán)回收系統(tǒng)使航天級(jí)銠復(fù)用成本降低70%