好的絮凝效果不僅需要大量的顆粒碰撞,還需要控制顆粒進行合理有效的碰撞,使顆粒聚集起來。速度梯度是絮凝過程中常用的控制動力學因素。根據(jù)絮凝動力學理論得知,絮凝過程中的速度梯度值是逐漸減小的;而且開始時刻的速度梯度值要求能與混合階段銜接上,所以一般要求較大。這時的絮凝也要求接觸和碰撞,但是由微渦旋理論可知要求的水力半徑要適合于自身的直徑,才能發(fā)生有效碰撞。理論上,攪拌強度越大,速度梯度越大,相互接觸碰撞的機會越多。但攪拌強度大(G值大),水流的剪切力就大,松散的絮體受到水流剪切會二次斷開成為小絮體。因此要求攪拌的強度(也就是速度梯度)隨著絮凝的進行而逐漸變小。整個混凝的過程中,G值是遞減的。但是速度梯度遞減規(guī)律,國內(nèi)外的還沒有定論。
矩形往復式絮凝池中普遍存在死水區(qū),死水區(qū)的存在,不僅容易形成沉積物的堆積,而且嚴重阻礙了水流的運動。特別是在絮凝后期,水流速度逐漸減小時,死水區(qū)對水流有越來越大的的負面影響。而圓弧形渠道,幾乎不存在死水區(qū),可以有效的消除死水區(qū)帶來的負面影響。且圓弧區(qū)的水流速度也比矩形渠道的分布均勻,有利于節(jié)約能耗。
通過混凝動力學的研究,得到了混凝動力學中速度梯度與時間的關(guān)系G=G(0)/1+Kt;并通過擬合得到往復式絮凝池速度梯度的變化規(guī)律近似符合混凝動力學對速度梯度變化的要求;同時參考了往復式絮凝池的新研究成果—將往復式絮凝池轉(zhuǎn)彎處的矩形渠道變成圓弧形狀,設(shè)計出一種的往復式絮凝池。通過數(shù)學模擬發(fā)現(xiàn):優(yōu)化后的往復式絮凝池拐彎處的圓弧形渠道能夠消除傳統(tǒng)往復式絮凝池轉(zhuǎn)彎處的死水區(qū),而且圓弧形渠道處的水流速度比矩形渠道處的分布均勻,有利于節(jié)約能耗。