計算機部件中大量使用集成電路。眾所周知,高溫是集成電路的大敵。高溫不但會導致系統(tǒng)運行不穩(wěn),使用壽命縮短,甚至有可能使某些部件燒毀。導致高溫的熱量不是來自計算機外,而是計算機內部,或者說是集成電路內部。散熱器的作用就是將這些熱量吸收,然后發(fā)散到機箱內或者機箱外,計算機部件的溫度正常。多數(shù)散熱器通過和發(fā)熱部件表面接觸,吸收熱量,再通過各種方法將熱量傳遞到遠處,比如機箱內的空氣中,然后機箱將這些熱空氣傳到機箱外,完成計算機的散熱。 散熱器的種類非常多,CPU、顯卡、主板芯片組、硬盤、機箱、電源甚至光驅和內存都會需要散熱器,這些不同的散熱器是不能混用的,而其中常接觸的就是CPU的散熱器。依照從散熱器帶走熱量的方式,可以將電腦的散熱器分為主動散熱和被動散熱。前者常見的是風冷散熱器,而后者常見的就是散熱片。進一步細分散熱方式,可以分為風冷,熱管,液冷,半導體制冷,壓縮機制冷等等。
散熱方式是指該散熱器散發(fā)熱量的主要方式。在熱力學中,散熱就是熱量傳遞,而熱量的傳遞方式主要有三種:熱傳導,熱對流和熱輻射。物質本身或當物質與物質接觸時,能量的傳遞就被稱為熱傳導,這是普遍的一種熱傳遞方式。比如,CPU散熱片底座與CPU直接接觸帶走熱量的方式就屬于熱傳導。熱對流指的是流動的流體(氣體或液體)將熱帶走的熱傳遞方式,在電腦機箱的散熱系統(tǒng)中比較常見的是散熱風扇帶動氣體流動的“強制熱對流”散熱方式。熱輻射指的是依靠射線輻射傳遞熱量,日常常見的就是太陽輻射。這三種散熱方式都不是孤立的,在日常的熱量傳遞中,這三種散熱方式都是同時發(fā)生,共同起作用的。
依照從散熱器帶走熱量的方式,可以將散熱器分為主動散熱和被動散熱,前者常見的是風冷散熱器,而后者常見的就是散熱片。進一步細分散熱方式,可以分為風冷、熱管、液冷、半導體制冷和壓縮機制冷等等。
銅的熱傳導系數(shù)是鋁的1.69倍,所以在其他條件相同的前提下,純銅散熱器能夠更快地將熱量從熱源中帶走。不過銅的質地是個問題,很多“純銅散熱器”其實并非是真正的的銅。在銅的列表中,含銅量超過99%的被稱為無酸素銅,下一個檔次的銅為含銅量為85%以下的丹銅。針對13年市場上大多數(shù)的純銅散熱器的含銅量都介于兩者之間。而一些劣質純銅散熱器的含銅量甚至連85%都不到,雖然成本很低,但其熱傳導能力大大降低,影響了散熱性。此外,銅也有明顯的缺點,成本高,加工難,散熱器質量太大都阻礙了全銅散熱片的應用;紅銅的硬度不如鋁合金AL6063,某些機械加工(如剖溝等)性能不如鋁;銅的熔點比鋁高很多,不利于擠壓成形( Extrusion )等問題。
熱量從CPU核心散發(fā)到散熱片表面,是一個熱傳導過程。對于散熱片的底座而言,由于直接與高熱量的小面積熱源接觸,這就要求底座能夠迅速將熱量傳導開來。散熱片選用較高熱傳導系數(shù)的材料對提高熱傳導效率很有幫助。通過熱傳導系統(tǒng)對照表可以看出,如鋁的熱傳導系數(shù)237W/mK,銅的熱傳導系數(shù)則為401W/mK,而比較同樣體積的散熱器,銅的重量是鋁的3倍,而鋁的比熱僅為銅的2.3倍,所以相同體積下,銅質散熱器可以比鋁質散熱器容納更多的熱量,升溫更慢。同樣厚度的散熱器底座,銅不但可以快速引走熱源如CPU Die的溫度,自己的溫度上升也比鋁的散熱片緩慢。因此銅更適合做成散熱器的底面。
扦焊是采用熔點比母材熔點低的金屬材料作為焊料,在低于母材熔點而焊料熔點的溫度下,利用液態(tài)焊料潤濕母材,填充接頭間隙,然后冷凝形成牢固接合界面的焊接方法。主要工序有:材料前處理、組裝、加熱焊接、冷卻、后處理等。常用的扦焊方式是錫扦焊,鋁表面在空氣中會形成一層非常穩(wěn)定的氧化層(AL2O3),使銅鋁焊接難度較高,這是阻礙焊接的大因素。要將其去除或采用化學方法將其去除后并電鍍一層鎳或其它容易焊接的金屬,這樣銅鋁才能順利焊接在一起。