該反應相對簡單,但由于產物中一氧化碳含量較高,而一氧化碳會對后續(xù)的氫氣應用,如燃料電池的使用產生不利影響,因此通常需要對產物進行進一步的處理,如通過一氧化碳變換反應將一氧化碳轉化為二氧化碳和氫氣,以提高氫氣的純度和質量 。
傳統(tǒng)的高壓氣態(tài)儲氫需要將氫氣壓縮至的壓力(通常為 35MPa 或 70MPa),這不僅需要昂貴的壓縮設備和高壓儲存容器,而且存在較大的安全風險 。液氫儲存雖然能量密度高,但需要將氫氣冷卻至 - 253℃的低溫,能耗,儲存和運輸成本高昂,且對儲存設備的絕熱性能要求。
在設備投資方面,甲醇制氫裝置的規(guī)??筛鶕嶋H需求靈活調整,從小型的分布式制氫裝置到大型的工業(yè)制氫工廠均可實現。對于中小規(guī)模的用氫需求,甲醇制氫設備的投資相對較低,建設周期短,能夠快速滿足用戶的需求。
能量效率是甲醇制氫技術面臨的另一大挑戰(zhàn)。甲醇水蒸氣重整制氫是吸熱反應,需要外界提供大量的熱量來維持反應的進行。在傳統(tǒng)的甲醇制氫工藝中,通常采用燃燒化石燃料來提供熱量,這不僅增加了能源消耗和生產成本,還會產生一定量的二氧化碳排放,降低了整個制氫過程的能源效率和環(huán)境友好性 。
在反應過程中,還存在著熱量傳遞和利用效率不高的問題。由于反應器內的溫度分布不均勻,導致部分反應區(qū)域的溫度過高或過低,影響了反應的進行和能量的有效利用。同時,反應后的產物氣中含有大量的余熱,若不能有效地回收利用,也會造成能量的浪費。甲醇制氫過程中的安全環(huán)保問題也不容忽視。
此外,甲醇制氫過程中會產生一定量的二氧化碳排放,雖然相較于傳統(tǒng)的化石燃料制氫方法,其二氧化碳排放量相對較低,但在全球對碳排放要求日益嚴格的背景下,如何進一步降低甲醇制氫過程中的碳排放,實現低碳甚至零碳制氫,也是該技術面臨的重要挑戰(zhàn)之一 。