碘化銠回收,從石化廢催化劑中回收碘化銠的技術
石化行業(yè)加氫催化劑(如Rh/Al?O?)的回收需先堿熔(NaOH, 500℃)破壞氧化鋁結構,再用鹽酸浸出銠。關鍵點包括:
鋁分離:調節(jié)pH至4.5沉淀Al(OH)?,避免干擾后續(xù)萃取
銠精煉:采用硫醚(R?S)選擇性萃取Rh3?,反萃用硝酸
中石化燕山分公司采用"堿熔-萃取-電積"工藝,處理量2000噸/年,銠回收率94.5%,純度99.97%
碘化銠回收,汽車催化劑中碘化銠的回收
廢棄汽車催化劑(含Rh 0.1%~0.5%)需先破碎磁選去除鐵質,再通過:
氯化揮發(fā)法:在800℃通入Cl?,生成氣態(tài)RhCl?,冷凝后溶解提純。
濕法浸出:硫酸-過氧化氫(H?SO?-H?O?, 90℃)溶解貴金屬,銠浸出率>95%。
日本豐田公司開發(fā)的熱等離子體熔煉技術,單爐處理量2噸/日,銠回收率93%,純度99.95%。
碘化銠回收,熔鹽電解精煉高純銠
對純度要求≥99.999%的領域(半導體靶材),采用:
電解體系:RhCl?-LiCl-KCl熔鹽(450℃)
陰極電流密度:50-100 A/m2
陽極雜質控制:銀網(wǎng)隔膜阻擋Pd/Pt遷移
日本田中貴金屬的熔鹽電解車間,年產3噸5N高純銠,雜質總量<1ppm
碘化銠回收,電解回收碘化銠的優(yōu)化工藝
電解法可直接從含銠廢液中沉積金屬銠,關鍵參數(shù)包括:
陰極材料:鈦網(wǎng)或鉑電極(氫過電位高)。
電解液組成:Rh3?濃度>5 g/L,pH 1.5–2.5。
電流密度:100–200 A/m2(過高會導致粉末狀沉積)。
德國Heraeus的脈沖電解技術使銠鍍層致密度提高30%,電流效率達90%,能耗降至8 kWh/g Rh。
碘化銠回收,膜分離技術的集成工藝
納濾(NF)和反滲透(RO)可用于濃縮含銠廢水。例如,DK納濾膜在2 MPa壓力下對Rh3?的截留率>99.5%,將料液從100 ppm濃縮至10,000 ppm。耦合電沉積技術時,銠可直接在鈦陰極上析出(電流效率85%)。韓國某企業(yè)采用“NF-電解”組合工藝,使廢水銠殘留<0.05 ppm,能耗較傳統(tǒng)蒸發(fā)法降低70%。
碘化銠回收,高溫合金廢料中銠的定向回收
航空渦輪葉片(含Rh 1-3%)的處理策略:
電子束熔煉:10??Pa真空度下,Rh與Ni/Co的蒸氣壓差實現(xiàn)分離
電解精煉:RhCl?-DMSO電解液體系,電流效率92%
粉末冶金:等離子體球化制備15-45μm噴涂粉末
美國Praxair公司實現(xiàn)航空級再生銠的閉環(huán)利用,每噸葉片回收價值達$450萬
12年