當超大規(guī)模集成電路的特征尺寸縮小至小于65nnm或者更小時,傳統(tǒng)的二氧化硅柵介質(zhì)層的厚度就需要小于1.4nm,而如此薄的二氧化硅層會大幅度增加器件功耗,并且減弱柵極電壓控制溝道的能力。在等效氧化層厚度保持不變的情況下,使用高介電材料替換傳統(tǒng)的柵極介質(zhì),使用加大介質(zhì)層物理厚度的方法,可以明顯減弱直接隧穿效應(yīng),并增加器件的可靠性。所以,找尋高介電的柵介質(zhì)材料就成了當務(wù)之急。在高介電柵介質(zhì)材料中,由于五氧化二鉭既具有較高的介電常數(shù)(K-26),又能夠兼容與傳統(tǒng)的硅工藝,被普遍認為是在新一代的動態(tài)隨機存儲器(DRAM)電容器件材料中相當有潛力的替代品
五氧化二鉭靶材------ InChI=1/5O.2Ta/rO5Ta2/c1-6(2)5-7(3)4五氧化二鉭(Ta2O5)為白色無色結(jié)晶粉末,是鉭常見的氧化物,也是鉭在空氣中燃燒生成的終產(chǎn)物。主要用作拉鉭酸鋰單晶和制造高折射低色散特種光學玻璃用,化工中可作催化劑
冶煉方法:鉭鈮礦中常伴有多種金屬,鉭冶煉的主要步驟是分解精礦,凈化和分離鉭、鈮,以制取鉭、鈮的純化合物,后制取金屬。
鉭磁控濺射靶材所具有的特性,使它的應(yīng)用領(lǐng)域十分廣闊
在化工、電子、電氣等工業(yè)中,鉭可以取代過去需要由貴重金屬鉑承擔的任務(wù),使所需費用大大降低
鉭鈮礦中常伴有多種金屬,廢鉭冶煉的主要步驟是分解精礦,凈化和分離鉭、鈮,以制取鉭、鈮的純化合物,后制取金屬。礦石分解可采用分解法、熔融法和氯化法等。鉭鈮分離可采用溶劑萃取法〔常用的萃取劑為甲基異丁基銅(MIBK)、三丁酯 (TBP)、仲辛醇和乙酰胺等〕、分步結(jié)晶法和離子交換法。