由于高速鋼和硬質(zhì)合金的價格比較昂貴,刀具出現(xiàn)焊接和機械夾固式結構。1949~1950年間,美國開始在車刀上采用可轉(zhuǎn)位刀片,不久即應用在銑刀和其他刀具上。1938年,德國德古薩公司取得關于陶瓷刀具的專利。1972年,美國通用電氣公司生產(chǎn)了聚晶人造金剛石和聚晶立方氮化硼刀片。這些非金屬刀具材料可使刀具以更高的速度切削。
刀具工作部分的結構有整體式、焊接式和機械夾固式三種。整體結構是在刀體上做出切削刃;焊接結構是把刀片釬焊到鋼的刀體上;機械夾固結構又有兩種,一種是把刀片夾固在刀體上,另一種是把釬焊好的刀頭夾固在刀體上。硬質(zhì)合金刀具一般制成焊接結構或機械夾固結構;瓷刀具都采用機械夾固結構。
刀具切削部分的幾何參數(shù)對切削效率的高低和加工質(zhì)量的好壞有很大影響。增大前角,可減小前刀面擠壓切削層時的塑性變形,減小切屑流經(jīng)前面的摩擦阻力,從而減小切削力和切削熱。但增大前角,同時會降低切削刃的強度,減小刀頭的散熱體積。
在選擇刀具的角度時,需要考慮多種因素的影響,如工件材料、刀具材料、加工性質(zhì)(粗、精加工)等,根據(jù)具體情況合理選擇。通常講的刀具角度,是指制造和測量用的標注角度在實際工作時,由于刀具的安裝位置不同和切削運動方向的改變,實際工作的角度和標注的角度有所不同,但通常相差很小。
高速刀具在離心力的作用下是否發(fā)生失效的關鍵在于刀體的強度是否足夠、機夾刀的零件夾緊是否可靠。當把離心力作為主要載荷計算刀體強度時,由于刀具形狀的復雜性,用經(jīng)典力學理論計算得出的結果誤差很大,常常不能滿足安全性設計的要求。為了在刀具設計階段對其結構強度在離心力作用下的受力和變形進行定性和定量的分析,可通過有限元方法計算不同轉(zhuǎn)速下的應力大小,模擬失效過程和改進設計方案。高速銑刀有限元計算模型中包括刀體、刀體座、刀片和夾緊螺釘。計算刀體(包括螺釘、刀片等零件質(zhì)量)的彈性變形,再對分離出的刀座作詳細分析,把所獲得的刀體彈性變形作為邊界條件加到刀座分離體;然后由切出的刀座、刀片、螺釘及無質(zhì)量的摩擦副組成刀片夾緊系統(tǒng)的模型,進行夾緊的可靠性分析。有限元模型能模擬刀片在刀座里的傾斜、滑動、轉(zhuǎn)動以及螺釘在夾緊時的變形,可計算出在不同轉(zhuǎn)速下刀片位移和螺釘受力的大小。